

VIJAYANAGARA SRI KRISHNADEVARAYA UNIVERSITY jnanasagara campus, ballari-583105

Department of Studies in

Bachelor of Application

I & II Semester Syllabus

BACHELOR OF BACHELOR OF APPLICATION

Programme as per State Education Policy 2024

Under Choice Based Credit System (CBCS)

With effect from 2024-25 and onwards

Title of Subject: PROGRA		r – 1)
COURSE CODE: 24MJBCA1L1	CIA Marks: 20	
SEMESTER: I	SEE Marks: 80	1
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
 Course Outcomes: After completing this course a Write algorithms, flowcharts for given proble Read, understand and trace the execution of 	ems	
Write the C code for a given problem3. Implement different programming constructs functions.		
 Use and implement data structures like arrays Define and use of pointers with simple progra 		lutions.
UNIT – I:		10 Hours
Problem Solving: Algorithm, characteristics of symbols used to design flowcharts. Draw flowch Introduction to C Programming: Overview of Program with Examples; Creating and Executing C Programming Basic Concepts: C Character S	nart for the problem. C; History and Features g a C Program; Compilat Set; C tokens - keywords	nderstand the different s of C; Structure of a C ion process in C. s, identifiers, constants,
and variables; Data types; Declaration & initializ	ation of variables; Sympo	12 Hours
Input and output with C: Formatted I/O functions sequences, output specifications with printf functions display single character and a string - getchar, pur C Operators & Expressions: Arithmetic oper Assignment operators; Increment & Decrem operator; Special operators; Expressions, Types Associativity, Evaluation of arithmetic expression UNIT – III: Control Structures: Decision making Stateme ladder, Switch Case, goto. Looping Statements - while, do-while, for loops, Nested loops, break & Arrays: Arrays: One Dimensional arrays representation; Two Dimensional arrays representation, Processing Arrays. Strings: Declaring & Initializing string variab strcpy and strcat.	nctions; Unformatted I/C utchar, gets and puts fun rators; Relational operat ent operators; Bitwise s of Expressions, Operato ons; Type conversion, Ma ents - Simple_if, if_else, Entry controlled and ex & continue statements; - Declaration, Initiali - Declaration, Initiali	D functions to read and actions. tors; Logical operators; operators; Conditional or Precedence and thematical functions. 12 Hours nested if_else, else_if it controlled statements, ization and Memory zation and Memory
UNIT – IV:		10 Hours
User Defined Functions: Need for user defined Components of user defined functions - return t	type, name, parameter lis	user defined functions; st, function body, return
statement and function call; Categories of user of and return type. Pointers in C: Understanding pointers - Declar and value of variables using pointers; Pointers a disadvantages of using pointers;	ring and initializing poir	nters, accessing address
and return type. Pointers in C: Understanding pointers - Declar and value of variables using pointers; Pointers a	ring and initializing poir	nters, accessing address

structure variables, accessing structure members, Structure members initialization, comparing structure variables, Array of Structures, Embedded structures; Unions - Union definition, defining a union, declaring union variables, accessing union members, union members initialization; difference between Structures and Unions.

File management in C: Introduction, Defining and opening a file, closing a file, Input/output and Error Handling on Files

Text Books:

- 1. Balaguruswarny: Programming in ANSI C, Tata McGraw-Hill.
- 2. Brian W. Kernighan and Dennis M. Ritchie: The C Programming Language, PHI

Reference:

- 1. V. Rajaraman: Fundamentals of Computers, PHI(EEE).
- 2. Kamthane, Programming with ANSI and Turbo C. Pearson Education, Asia.
- 3. Herbert Schildt: C. The complete reference, 4th edition.
- 4. Yeshwant Kanetkar: Let us C, BPB Publications.
- 5. Rajesh Hongal Computer Concepts and C Programming.

Title of Subject: C PROGRAMMING LAB (Major – 1)			
COURSE CODE: 24MJBCA1P1	CIA Marks: 10		
SEMESTER: I	SEE Marks: 40		
Contact Hours: (L:T:P): 0-0-4	Credit: 02	Duration of Exam: 03	

Part A

Algorithm and Flowchart

- **Algorithm Writing**: Write algorithms for basic problems such as finding the largest of three numbers, calculating the factorial of a number, and generating Fibonacci series.
- **Flowchart Design**: Draw flowcharts for the above algorithms using standard symbols.

Introduction to C Programming

- **Simple C Program**: Write a program to display "Hello, World!" and understand the structure of a C program.
- **C Program Structure**: Write a program to add two numbers and display the result. Discuss the structure of the C program (including headers, main function, and return statement).

C Programming Basic Concepts

- **Character Set and Tokens**: Write a program to demonstrate the use of keywords, identifiers, constants, and variables.
- **Data Types**: Write a program to declare and initialize variables of different data types (int, float, char, double).
- **Symbolic Constants**: Write a program to define and use symbolic constants.

Formatted I/O Functions

- **printf and scanf**: Write a program to read and display an integer, a float, and a character using printf and scanf.
- **Control Strings and Escape Sequences**: Write a program to demonstrate the use of different control strings and escape sequences in printf and scanf.

Unformatted I/O Functions

- **Single Character I/O**: Write a program to read and display a single character using getchar and putchar.
- String I/O: Write a program to read and display a string using gets and puts.

C Operators and Expressions

- **Arithmetic Operators**: Write a program to perform basic arithmetic operations (+, -, *, /, %).
- **Relational and Logical Operators**: Write a program to demonstrate the use of relational and logical operators.
- **Assignment and Increment/Decrement Operators**: Write a program to demonstrate the use of assignment, increment, and decrement operators.

• **Bitwise and Conditional Operators**: Write a program to demonstrate the use of bitwise and conditional operators.

Decision Making Statements

- **if-else Statements**: Write a program to find the largest of three numbers using if-else statements.
- **Nested if-else and else-if Ladder**: Write a program to classify a student's grade based on marks using nested if-else and else-if ladder.
- **Switch Case**: Write a program to print the day of the week using switch-case statements.

Part B

Looping Statements

- **while Loop**: Write a program to print the first 10 natural numbers using a while loop.
- **do-while Loop**: Write a program to print the factorial of a number using a dowhile loop.
- o **for Loop**: Write a program to generate the Fibonacci series using a for loop.
- **Nested Loops**: Write a program to print a multiplication table using nested loops.

Arrays

- **One Dimensional Arrays**: Write a program to read and display elements of a one-dimensional array.
- **Two Dimensional Arrays**: Write a program to read and display elements of a two-dimensional array.
- **Array Processing**: Write a program to find the sum and average of elements in an array.

Strings

• **String Handling Functions**: Write a program to demonstrate the use of string handling functions (strlen, strcmp, strcpy, strcat).

User Defined Functions

- **Simple Function**: Write a program to find the square of a number using a user-defined function.
- **Functions with Parameters**: Write a program to calculate the sum of two numbers using a function with parameters and return type.
- **Functions without Parameters**: Write a program to display a message using a function without parameters and return type.

Pointers in C

- **Pointer Basics**: Write a program to declare and initialize pointers and access the value and address of variables using pointers.
- **Pointers and Arrays**: Write a program to demonstrate the relationship between pointers and arrays.
- **Pointer Arithmetic**: Write a program to perform pointer arithmetic (increment, decrement, addition, subtraction).

Structures

- **Structure Definition**: Write a program to define a structure for a student (roll number, name, marks) and demonstrate initialization and access of structure members.
- **Array of Structures**: Write a program to create an array of structures for students and display their details.
- **Embedded Structures**: Write a program to demonstrate embedded structures (structure within a structure).

Unions

- **Union Basics**: Write a program to define a union for different data types (int, float, char) and demonstrate initialization and access of union members.
- **Difference between Structures and Unions**: Write a program to show the memory usage difference between structures and unions.

File Management in C

- File Operations: Write a program to create, open, read, write, and close a file.
- **Error Handling in File Operations**: Write a program to handle errors during file operations (e.g., file not found, read/write errors).

Assessment Criteria		Marks
Program – 1 from Part A	Writing the Program	07
	Execution	08
Program -2 from Part B	Writing the Program	07
	Execution	08
Practical Record		05
Viva-Voce		05
Total		40

Evaluation Scheme for Lab Examination:

COURSE CODE: 24MJBCA1L2	CIA Marks: 20	
SEMESTER: I	SEE Marks: 80	1
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
 Course Outcomes: After completing this course 1. CO1: Understand significance of num 2. CO2: Apply different simplification m 3. CO3: Illustrate knowledge on design e 4. CO4: Illustrate the concept of sequential registers, and counters 	nber systems, conversionethods for minimizing of various combinationations	ons, binary codes Boolean functions al circuits
UNIT – I:		10 Hours
Number system and codes: Number Systems: octal number system, hexadecimal number s another. Complement representation of r complement method, Two's complement meth EXCESS-3, ASCII and Unicode, error detection	system. conversion fro negative numbers: Si od, Binary Arithmetic.	om one number system to igned Magnitude, One': Codes: BCD, GRAY, ides.
UNIT – II:		12 Hours
Boolean expression, De Morgan's theorems a using Boolean laws. Basic gates (AND, OR, M and symbols, universal gates (NAND, NOR) symbols, design of basic gates using NAND NOR, Design of given Boolean expression usin gates (Definition, Boolean expression and symbol UNIT – III: Simplification of Boolean functions: SOP and of Boolean equation in Min and Max term (cor K-map method: Rules, simplification of Boo	NOT): truth table, Definition truth table, definition and NOR gates- Logicang basic gates or univer bols, truth table). d POS form, min term niversion of SOP and PO	nition, Boolean expression n, Boolean expression and al gates using NAND and rsal gates. XOR and XNOR 12 Hours and max term, expression DS forms to standard form
without and with don't-care condition, Impl NOR gate, Quine - McCluskey Tabulation me implicates	ementation using basi	c gates or NAND gate of
UNIT – IV:		10 Hours
Combination logic: Design procedure, design full sub tractor. Code converters: - BCD to E encoders (BCD to decimal), decoder (decima DeMultiplexer(1:4 and 1:8).	xcess 3 code, gray cod	le, magnitude comparator
UNIT – V:		12 Hours
Sequential logic: Introduction, Flip-flops — SF Introduction, shift register- types and applicati counters (Up, down, up down).	•	3, 0

Reference:

- 1. Heuring and Jordan, Computer systems design and architecture, Pearson Education
- 2. William Stallings, Computer Organization and Architecture, Pearson Education 2003.
- 3. Andrew S Tenenbaum, Structured Computer Organization, 3rd Edition, Prentice Hall of India(1990).
- 4. Kamthane, Programming with ANSI and Turbo C. Pearson Education, Asia.
- 5. Herbert Schildt: C. The complete reference, 4th edition.
- 6. Yeshwant Kanetkar: Let us C, BPB Publications.
- 7. Rajesh Hongal Computer Concepts and C Programming.

Title of Subject: DIGITAL LOGIC LAB (Major – 2)			
COURSE CODE: 24MJBCA1P2	CIA Marks: 10		
SEMESTER: I	SEE Marks: 40		
Contact Hours: (L:T:P): 0-0-4	Credit: 02	Duration of Exam: 03	

Part A

Number System Conversion

Binary to Decimal Conversion:

- Create a simple binary to decimal conversion circuit using binary switches (inputs) and a binary-to-decimal display component.
- Use combinational logic gates to add the binary inputs and display the decimal result.

Decimal to Binary Conversion:

- Use a decimal switch as input and connect it to a binary output display using binary-to-decimal encoder.
- Implement a logic circuit that converts decimal input to binary output.

Octal to Hexadecimal Conversion:

- Create a circuit with octal input switches and connect them to a hexadecimal display.
- Use intermediate binary representation for conversion.

Complement Representation

Signed Magnitude Representation:

- Design a circuit that takes a binary number and a sign bit as input.
- Use logic gates to display the signed magnitude representation.

One's Complement Method:

- Create a circuit that computes the one's complement of a binary number.
- Use NOT gates to invert each bit of the input number.

Two's Complement Method:

• Design a circuit that computes the two's complement by inverting the bits (using NOT gates) and adding one (using a binary adder).

Binary Arithmetic

Binary Addition:

- o Implement a binary adder circuit using half adders and full adders.
- Use binary switches for input and an LED display for output.

Binary Subtraction:

• Design a circuit to perform binary subtraction using two's complement method and a binary adder.

Code Conversions

BCD to Binary Conversion:

• Use BCD switches as input and connect them to a binary output display using a BCD-to-binary encoder circuit.

Binary to Gray Code Conversion:

• Design a circuit that converts a binary number to its Gray code equivalent using XOR gates.

Gray Code to Binary Conversion:

Implement a circuit that converts Gray code input back to binary using XOR gates.

ASCII Conversion:

- Create a circuit that displays the ASCII value of a given character and vice versa.
- o Use switches for input and a seven-segment display for output.

Boolean Expression Evaluation

Boolean Laws:

- Design circuits to verify Boolean laws using basic logic gates.
- o Use switches as inputs and LEDs to display the results.

De Morgan's Theorems:

 Implement circuits to verify De Morgan's theorems using NOT, AND, and OR gates. o Display the results using LEDs.

Basic Gates

AND, OR, NOT Gates:

- o Create separate circuits for AND, OR, and NOT gates.
- Use truth tables to test the functionality.

NAND and NOR Gates as Universal Gates:

 Design circuits to implement AND, OR, and NOT gates using only NAND and NOR gates.

XOR and XNOR Gates

XOR Gate:

- Implement an XOR gate circuit using AND, OR, and NOT gates.
- o Display the output using LEDs.

XNOR Gate:

- o Implement an XNOR gate circuit using AND, OR, and NOT gates.
- Display the output using LEDs.

Part B

SOP and POS Forms

SOP to POS Conversion:

- o Create a circuit that converts SOP form to POS form using logic gates.
- o Test with sample inputs and verify the outputs.

POS to SOP Conversion:

- Create a circuit that converts POS form to SOP form using logic gates.
- o Test with sample inputs and verify the outputs.

Half Adder and Full Adder

Half Adder Design:

- Implement a half adder circuit using XOR and AND gates.
- Use switches for input and LEDs for output.

Full Adder Design:

- Design a full adder circuit using two half adders and an OR gate.
- Use switches for input and LEDs for output.

Half Subtractor and Full Subtractor

Half Subtractor Design:

- Implement a half subtractor circuit using XOR and AND gates.
- Use switches for input and LEDs for output.

Full Subtractor Design:

- Design a full subtractor circuit using two half subtractors and an OR gate.
- Use switches for input and LEDs for output.

Code Converters

BCD to Excess-3 Code Converter:

- Design a circuit to convert BCD input to Excess-3 code using logic gates.
- \circ $\;$ Use switches for input and LEDs for output.

Gray Code Converter:

• Implement a circuit to convert binary to Gray code using XOR gates.

Encoders and Decoders

BCD to Decimal Encoder:

- o Design a BCD to decimal encoder circuit using logic gates.
- Use switches for input and LEDs for output.

Decimal to BCD Decoder:

o Implement a decimal to BCD decoder circuit using logic gates.

Multiplexers and Demultiplexers

4:1 Multiplexer:

- Design a 4:1 multiplexer circuit using AND, OR, and NOT gates.
- \circ $\:$ Use switches for input and LEDs for output.

1:4 Demultiplexer:

o Implement a 1:4 demultiplexer circuit using AND, OR, and NOT gates.

Flip-Flops

SR Flip-Flop:

- Design an SR flip-flop circuit using NAND gates.
- Use switches for input and LEDs for output.

JK Flip-Flop:

- Implement a JK flip-flop circuit using NAND gates.
- Use switches for input and LEDs for output.

D Flip-Flop:

- Design a D flip-flop circuit using NAND gates.
- Use switches for input and LEDs for output.

T Flip-Flop:

- Implement a T flip-flop circuit using NAND gates.
- Use switches for input and LEDs for output.

JK-MS Flip-Flop:

o Design a JK master-slave flip-flop circuit using NAND gates.

Implementation Steps Using Logisim

- 1. Install Logisim: Download and install Logisim from the official website.
- 2. Create New Project: Start Logisim and create a new project.
- 3. **Design Circuit**: Use the toolbar to select components (gates, switches, LEDs, etc.) and design the circuit as per the program requirements.
- 4. **Simulate**: After designing the circuit, simulate it by providing inputs using switches and observing outputs on LEDs or other display components.
- 5. **Save and Document**: Save the circuit design and document the steps taken, including screenshots and descriptions for each part of the circuit.

Assessment Criteria		Marks
Program – 1 from Part A	Writing the Program	07
	Execution	08

Evaluation Scheme for Lab Examination:

Total		40
Viva-Voce		05
Practical Record		05
	Execution	08
Program -2 from Part B	Writing the Program	07

Title of Subject: Mat	hematics (Major - 3)		
COURSE CODE: 24MJBCA1L3	CIA Marks: 20		
SEMESTER: II	SEE Marks: 80		
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03	
 Course Outcomes: Study and solve problems related to con different situations. Develop basic knowledge of matrices an the concept of Eigen values. To develop the knowledge about derive differentiation. Verify trigonometric identities, using prevaluate expressions. Solve trigonometric equations. 	d to solve equations usir vatives and know variou	ng Cramer's rule. Know us applications of	
 Take limits of algebraic and trigonomet non-zero number over 0, including limit that don't exist and limits that are finite. 	 Take limits of algebraic and trigonometric expressions of the form 0/0 (that's simplify), non-zero number over 0, including limits that go to (positive or negative) infinity, limits that don't exist and limits that are finite. Differentiate and integrate all polynomial, rational, and trigonometric functions, and 		
UNIT – I:		10 Hours	
statement formulas and truth tables- Condition contradiction- Quantifiers, negation, consequen problems, proving a statement by the method of UNIT – II: Matrix algebra: Introduction-Types of matrices determinant of matrix- inverse of a matrix-Cra form-echelon form, Eigen values and Eigen vector	ces of implication-contra contradiction by giving -matrix operations- tran amer's rule, finding ran	apositive and converse, counter example. 10 Hours spose of a matrix- k of a matrix - normal	
UNIT – III:		12 Hours	
Trigonometry: Trigonometric functions, Mea conversion from one measure to another. Defin unit circle. Truth of the identity' sin2x + cos2 = 1 terms of sin x, sin y, cos x and cos y and their sir obtaining theirtrigonometric ratios using comporcos2x, tan2x, sin3x, cos3x and tan3x.	ition of trigonometric fu , for all x. Expressing sin nple applications. Defini	nctions with the help of (x+ y) and cos (x + y) in tion of allied angles and entities related to sin2x,	
UNIT – IV:		12 Hours	
continuous function, Differentiability - Simple	Differential Calculus: Functions and limits, Continuity of a function, Fixed point property of continuous function, Differentiability - Simple Differentiation of Algebraic Functions, product rule and quotient rule– Evaluation of First and Second Order Derivatives.		
UNIT – V:		12 Hours	
Integral Calculus: Definition, Indefinite nature Integration by substitution, examples. Integra Integration by partial fractions and Integration and Properties of definite integrals.	ition using trigonometr	ic identities, examples.	

Text Books:

- 1. Discrete Mathematics 2nd Edn. (Schaum's Outline Series), Seymour Lipschutz, Marc Lipson, Tata Mc-Graw Hill.
- 2. Shanti Narayan, A Text book of Matrices, S. Chand Publishing N. Delhi
- 3. S. L Loney, Plane Trigonometry, Part1 and 2, Arihant Publications, 2016
- 4. Shanti Narayan, Integral Calculus, S. Chan & Co.1999.
- 5. Shanti Narayan, Differential Calculus, S. Chand & Co.1998.

References:

- 1. M. Shantakumar, Engineering Mathematics–Volume I, Vasundhara Publishers, Mysore.
- 2. Dr.B.S. Grewal, Elementary Engineering Mathematics, Khanna Publishers, Delhi.
- 3. H K Das. Advanced Engineering Mathematics, S. Chand & Co., N. Delhi.2019.

Title of Subject: Acc	ountancy (Major – 3)	
COURSE CODE: 24MJBCA1L3	CIA Marks: 20	
SEMESTER: II	SEE Marks: 80	-
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
 Course Outcomes: Study and understand Accounting, systematic and limitations. Know the concept of accounting, financial 		
 Maintenance different account book and Preparations of different bills, and trial b 		
UNIT – I:		12 Hours
Introduction: History and Development of Acc Accounting, Bookkeeping V/s Accounting, Use and accounting, branches of accounting, advanta	rs of accounting data, sy	stems of book keeping
UNIT – II:		10 Hours
Accounting Concepts and Convention: Meanin meaning, need and classification of Indian accounting Financial Accounting Process: Classification of debit and credit as per Double Entry System. Jou	inting standards. accounting transactions	and accounts, rules of
UNIT – III:		10 Hours
Preparation of Different Subsidiary Books: F Returns Day Book, Sales Returns Day Book, C Meaning, Causes of Difference, Advantages, Pre	ash Book. Bank Reconcil	iation Statement: liation Statements
UNIT – IV: Account Procedure: Honor of the Bill, Dishone Renewal, and Bill for collection, Retirement of Book and Payable Book. Preparation of Trial Bal	the Bill, Accommodation	on Bills, Bill Receivable
UNIT – V:		12 Hours
Preparation of Final Accounts: Meaning, need a account and Balance – Sheet of sale- traders and	•	ation of Profit and loss
 Text Books: S. Ramesh, B.S. Chandrashekar, A Text B V.A. Patil and J.S. Korihalli, Book – keep R. S. Singhal, Principles of Accountancy, M. B. Kadkol, Book–Keeping and Accour Vithal, Sharma: Accounting for Manager S. K. Bhattacharya and Jhon Dearden, A Vikas publishing, 2018. 	ing and accounting, (R. C (Nageen Prakashpvt. Lit. ntancy,(Renuka Prakasha nent, Macmillan Publishe ccounting for Manageme	. Meerut). an, Hubli) ers, Mumbai.
 B.S. Raman, Accountancy, (United Publis Tulsian, Accounting and Financial Mai Education. 	•	Accounting – Person

Title of Subject: DATA STRU	CTURES USING 'C' (N	1ajor – 1)
COURSE CODE: 24MJBCA2L1	CIA Marks: 20	
SEMESTER: II	SEE Marks: 80	
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
 Course Outcomes: After completing this course Describe how arrays, linked structur memory and used by algorithms Describe common applications for array Write programs that use arrays, linke Compare alternative implementation Describe the concept of recursion; gives 	es, stacks, queues, trees a rays, linked structures, st d structures, stacks, queu s of data structures with	are represented in acks, queues, trees ues, trees,
 Discuss the computational efficiency searching. 	•	ithms for sorting,
UNIT – I:		12 Hours
Introduction to Data structures: Definition; primitive, Linear and Non-linear; Operations Performance Analysis, Performance Measureme Recursion: Definition; Types of recursions; Recu GCD, Factorial, Comparison between iterative and	on data structures. A nt Irsion Technique Exampl	lgorithm Specification,
UNIT – II:		12 Hours
arrays; Arrays as abstract data types (ADT); Traversing line arrays; Inserting and deleting Quick sort, Selection sort, Insertion sort; Search and Recursive searching; multidimensional Arra Sparse matrices.	elements; Sorting : Selening: Sequential Search,	ction sort, Bubble sort, Binary search; Iterative
UNIT – III:		12 Hours
Stacks: Basic Concepts, Definition and Representat stacks; Infix, postfix and prefix notations; Conversi postfix expression, Tower of Hanoi. Queues: Basic Concepts, Definition and Represent Circular queues, Double ended queues, Priority queue	ion from infix to postfix u ation of queues; Types of	using stack; Evaluation of queues - Simple queues, neues;
UNIT – IV:		10 Hours
Dynamic memory allocation: Static & Dynamic allocation functions - malloc, calloc, realloc and the Linked list: Basic Concepts, Definition and Rep Singly linked list, doubly liked list, Header lis single Linked list in Memory; Operations on Si Insertion, Deletion; Memory allocation; Garbage	free. presentation of linked list ked list, Circular linked ngly linked lists – Trave	t, Types of linked lists - list; Representation of
UNIT – V:		10 Hours
Trees: Definition; Tree terminologies –node, siblings, terminal & non-terminal nodes, degree Type of binary trees - strict binary tree, comple Array representation of binary tree. Traversal or traversal; Reconstruction of a binary tree when a	of a node, level, edge, p te binary tree, binary sea f binary tree; pre order, i	bath, depth; Binary tree: arch tree and heap tree; in order and Post order

Text Books:

- 1. Kamthane: Introduction to Data Structure in C, Pearson Education 2005.
- 2. Langsam, Ausenstein Maoshe & M. Tanenbaum Aaron, Data Structure using C and C++ Pearson Education.

References Books:

- 1. Weiss: Data Structure and Algorithm Analysis in C, IInd Edition, Pearson Education.
- 2. Lipschutz: Schaum's outline series Data Structures, Tata McGraw Hill.
- 3. Tenenbaum: Data Structures using C, Pearson Education

Title of Subject: DATA STRUCTURES LAB' (Major – 1)		
COURSE CODE: 24MJBCA2P1	CIA Marks: 10	
SEMESTER: II	SEE Marks: 40	
Contact Hours: (L:T:P): 0-0-4	Credit: 02	Duration of Exam: 03

Part A

Algorithm Specification and Performance Analysis

- Write a program to implement and analyze the time complexity of a simple algorithm like Linear Search.
- Write a program to implement and analyze the space complexity of a recursive algorithm like calculating Fibonacci numbers.

Recursion Techniques

- Write a recursive function to compute the Fibonacci sequence up to n terms.
- Write a recursive function to find the GCD of two numbers.
- Write a recursive function to compute the factorial of a given number.
- Compare the performance of recursive and iterative versions of Fibonacci and factorial functions.

Basic Array Operations

- Write a program to perform insertion, deletion, and traversal of elements in a one-dimensional array.
- Write a program to implement and test various array operations (traversing, searching, insertion, deletion) on a two-dimensional array.

Sorting Algorithms

- Implement Selection Sort and analyze its time complexity.
- o Implement Bubble Sort and analyze its time complexity.
- Implement Quick Sort and analyze its time complexity.
- o Implement Insertion Sort and analyze its time complexity.

Searching Algorithms

- Implement Sequential Search and analyze its performance.
- Implement Binary Search and compare its performance with Sequential Search.

Sparse Matrices

o Write a program to represent and perform operations on a sparse matrix.

Part B

Stacks

- Implement a stack using arrays and perform operations like push, pop, and display.
- Write a program to convert an infix expression to a postfix expression using stack.
- Write a program to evaluate a postfix expression using stack.
- Implement the Tower of Hanoi problem using recursion.

Queues

- Implement a simple queue using arrays and perform operations like enqueue, dequeue, and display.
- Implement a circular queue using arrays and perform operations like enqueue, dequeue, and display.
- o Implement a priority queue and perform necessary operations.
- Implement a double-ended queue (deque) and perform operations like insert at front, insert at rear, delete from front, and delete from rear.

Dynamic Memory Allocation

• Write a program to dynamically allocate memory for an array and perform operations on it using malloc, calloc, realloc, and free.

Linked Lists

- Implement a singly linked list and perform operations like insertion, deletion, and traversal.
- Implement a doubly linked list and perform operations like insertion, deletion, and traversal.
- Implement a circular linked list and perform operations like insertion, deletion, and traversal.
- o Implement a header linked list and perform necessary operations.

Binary Trees

- Write a program to implement a binary tree and perform pre-order, in-order, and post-order traversals.
- Write a program to reconstruct a binary tree from given in-order and preorder traversals.
- Implement a binary search tree (BST) and perform operations like insertion, deletion, and searching.

Heap Trees

• Implement a min-heap and max-heap and perform operations like insertion and deletion.

Assessment Criteria		Marks
Program – 1 from Part A	Writing the Program	07
	Execution	08
Program -2 from Part B	Writing the Program	07
	Execution	08
Practical Record		05
Viva-Voce		05
Total		40

Evaluation Scheme for Lab Examination:

Title of Subject: OOPs with C++ (Major – 2)		
COURSE CODE: 24MJBCA2L2	CIA Marks: 20	
SEMESTER: II	SEE Marks: 80	
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
 Course Outcomes: After completing this course 1. Understanding about object-oriented capability to store information togeth 2. Understand about constructors and constructors and constructors and constructors and constructors and pointers in your Constructions and pointers in your Constructors 5. Write C++ programs using classes and 	programming and Gain ler in an object. lestructors which are spe overloading concepts ar ++ program.	knowledge about the cial type of functions.
UNIT – I:		12 Hours
Introduction: Object-Oriented Programming programming, benefits of OOPs, object-oriente C++ program, creating the source file, compiling C++ Basics: The iostream classes, C++ comments qualifier, the endl, setw, set Precision, Manipula delete operators, expressions and implicit conve Functions: Function prototyping; call by referen argument, Const arguments, function overloadin UNIT – II: Classes and Objects: Specifying a class, defining inline, nesting of member functions, private m allocation for objects, static data member, static function arguments. Constructors, parameter default arguments, dynamic initialization of ob and destructors.	d languages, application and linking. s, C++ keywords, variabl tors, the scope resolution rsions, operator preceder nce, return by reference, i ng. g member functions, mak hember functions, arrays c member functions, arrays	ns of OOP, structure of e declaration, the const n operator, the new and nce, control structures. nline functions, default 12 Hours king an outside function within a class, memory ays of objects, object as iple constructors with dynamic constructors,
UNIT – III:		10 Hours
Operator Overloading: Fundamental of operator overloading, Restriction on operator overloading, Operator functions as a class member, Overloading unary operator: unary minus, increment operator Overloading binary operator: arithmetic operator, comparison operators, arithmetic assignment operator, Data conversion: conversion between basic to class types, conversion between objects and basic types, conversion between objects of different classes.		
UNIT – IV:		10 Hours
Inheritance:Introduction to inheritance, Derived class & Base class:Specifying the derivedclass, access specifiers, accessing the base class members, the protected access specifier, derivedclass constructor, overriding member functions, types of inheritance:Single level inheritance,Multilevel inheritance, hybrid inheritance, multiple inheritance, public & private inheritance,member functions in multiple inheritance, constructors in multiple inheritance, Containership:classes within classes, Inheritance program development.UNIT – V:12 Hours		
Virtual Functions: Normal member function a	cressed with nointers vi	
accessed with pointers, dynamic binding, pure	•	

functional notation, friend classes, this pointer, accessing member data with this, using this for returning values.

Templates & Exception Handling: Introduction, templates, class templates, function templates, member function templates, template arguments, Exception handling.

Text Book:

- L E.Balaguruswamy: Object oriented Programming with C++ Tata McGraw Hill publications.
- 2. Lafore Robert: Object oriented Programming in Turbo C++ Galgotia Publications. **Reference:**
 - 1. Stanley B. Lippman, JoseeLajoie, Barbara E. Moo: C++ primer, 5th Edition, Addison-Wesley.
 - 2. Prata : C++ primer Plus, 4th Edition. Person Education.
 - 3. Strousstrup: The C++ programming Language Pearson Education.

Title of Subject: OOPs with C++ LAB (Major – 2)		
COURSE CODE: 24MJBCA2P2	CIA Marks: 10	
SEMESTER: II	SEE Marks: 40	
Contact Hours: (L:T:P): 0-0-4	Credit: 02	Duration of Exam: 03

Part A

Introduction to C++ and Basic Concepts

- Write a C++ program to display the structure of a basic C++ program with comments explaining each part.
- Write a C++ program that demonstrates the use of iostream classes and iomanip manipulators like endl, setw, and setprecision.

Control Structures

• Write a C++ program to demonstrate the use of various control structures (if, switch, for, while, do-while).

Functions

- Write a C++ program to demonstrate function prototyping and function overloading.
- Write a C++ program that uses call by reference and return by reference.
- Write a C++ program to demonstrate the use of inline functions.
- Write a C++ program that uses default and constant arguments in functions.

Basic Class Implementation

- Write a C++ program to define a class, its member functions, and demonstrate the creation of objects.
- Write a C++ program to demonstrate private member functions and inline member functions.
- Write a C++ program to show the use of static data members and static member functions.

Constructors and Destructors

- Write a C++ program to implement various types of constructors: default, parameterized, copy, and dynamic constructors.
- Write a C++ program to demonstrate the use of destructors.

Arrays and Objects

• Write a C++ program to demonstrate the use of arrays within a class and arrays of objects.

• Write a C++ program to pass objects as function arguments and return objects from functions.

Part B

Unary and Binary Operator Overloading

- Write a C++ program to overload the unary minus operator.
- Write a C++ program to overload the increment (++) and decrement (--) operators.
- Write a C++ program to overload arithmetic binary operators (e.g., +, -).
- Write a C++ program to overload comparison operators (e.g., ==, <, >).

Type Conversion

- Write a C++ program to demonstrate type conversion between basic types and user-defined types.
- Write a C++ program to demonstrate type conversion between objects of different classes.

Basic Inheritance Concepts

- Write a C++ program to implement single inheritance.
- Write a C++ program to implement multilevel inheritance.
- Write a C++ program to implement multiple inheritance.
- Write a C++ program to demonstrate the use of the protected access specifier and constructor in inheritance.

Advanced Inheritance

- Write a C++ program to implement hybrid inheritance.
- Write a C++ program to demonstrate public and private inheritance.
- Write a C++ program to show member functions in multiple inheritance.
- Write a C++ program to implement containership (classes within classes).

Virtual Functions

- Write a C++ program to demonstrate the use of normal member functions and virtual member functions accessed with pointers.
- Write a C++ program to implement dynamic binding using virtual functions.
- Write a C++ program to demonstrate pure virtual functions and abstract classes.

Friend Functions and This Pointer

- Write a C++ program to demonstrate friend functions and friend classes.
- Write a C++ program to demonstrate the use of the this pointer.

Templates and Exception Handling

- Write a C++ program to implement function templates.
- Write a C++ program to implement class templates.
- Write a C++ program to demonstrate template arguments.
- Write a C++ program to implement exception handling using try, catch, and throw.

Evaluation Scheme for East Examination.		
Assessment Criteria		Marks
Program – 1 from Part A	Writing the Program	07
	Execution	08
Program -2 from Part B	Writing the Program	07
	Execution	08
Practical Record		05
Viva-Voce		05
Total		40

Evaluation Scheme for Lab Examination:

Title of Subject: DISCRETE MATHEMATICAL STRUCTURES (Major – 1)		
COURSE CODE: 24MJBCA2L3	CIA Marks: 20	
SEMESTER: II	SEE Marks: 80	
Contact Hours: (L:T:P): 4-0-0	Credit: 04	Duration of Exam: 03
Course Outcomes:		
1. To understand the basic concepts of Ma	•	
2. To understand various counting techni	ques and principle of incl	usion and exclusions.
3. Understand the concepts of various types of relations, partial ordering and Equivalence		
relations.		
4. Apply the concepts of generating funct	ions to solve the recurren	ce relations.
5. Familiarize the fundamental concepts of	of graph theory and short	est path algorithm
UNIT – I:		12 Hours
The Foundations: Logic and proofs: Proposit	tional Logic, Application	s of Propositional Logic,
Propositional Equivalences, Predicates and Q	uantifiers, Nested Quant	ifiers, Rules of Inference,
Introduction to Proofs, Proof Methods and Stra	ategy.	
Basic Structures: Sets, Functions, Sequences, S	ums, and Matrices: Sets, s	set operations, Functions,
Sequences and Summations, matrices.		
UNIT – II:		12 Hours
Counting: Basics of counting, Pigeonhole pr	inciple, Permutation and	d combination, Binomial
Coefficient and Combination, Generating Perr	nutation and Combinatio	n.
Advanced Counting Techniques: Applica	tions of Recurrence Re	elations, Solving Linear
Recurrence, Relations, Divide and Conquer /	Algorithms and Recurrer	nce Relations, Generating
functions, Inclusion-Exclusion,	-	-
Applications of Inclusion-exclusion.		
UNIT – III:		12 Hours
Induction and Recursion: Mathematical Induction		
Definitions and Structural Induction, Recursive Alg		
Relation: Properties of relation, Composition of		on relation, Equivalence
relation and partition. Operation on relation, Repres	senting relation.	10 Hours
	Forminalogy, and Special	
Graphs: Graphs and Graph models, Graph		
Representing Graphs and Graph Isomorphism Shortest-Path Problems, Planar Graphs, Graph	•	nu mannitun Patris,
UNIT – V:	Coloring	10 Hours
Algorithmic approach on graph theory: Span	ning trees Connector pro	
tree, Fundamental circuits, connectedness and	0	1 0
shortest path from a specified vertex to anothe		v .
Text Books:		
	Kenneth H. Rosen: Seventh	Edition, 2012
 Discrete Mathematics and Its Applications, Kenneth H. Rosen: Seventh Edition, 2012. Discrete Mathematical Structure, Bernard Kolman, Robert C, Busby, Sharon Ross, 2003. 		
-		
 Graph Theory with Applications to Engg and Comp. Sci: Narsingh Deo-PHI 1986 Discrete and Combinatorial Mathematics Ralph P.Grimaldi, B.V.Ramatta, Pearson, Education, 5th 		
Edition.		
5. Discrete Mathematical Structures, Trembley	and Manobar	
J. Discrete Mathematical Structures, Hembley		

BCA/B.Sc Degree Examination,

SEP – QP - Pattern

Time: 3 Hours

Max. Marks: 80

Section – A

Note: Answer all sub questions Each question carries TWO mark.	(10 x 2 = 20)
1.	
a)	
b)	
c)	
d)	
e)	
f)	
g)	
h)	
i)	
j)	

Section – B

Note : Answer any Four questions Each question carries FIVE marks.		(4 x 5 =20)
2.		
3.		
4.		
5.		
6.		
7.		
	Section – C	
Note : Answer any Four questions	Section – C	
Note : Answer any Four questions Each question carries TEN marks.		(4 x 10 =40)
		(4 x 10 =40)
Each question carries TEN marks.		(4 x 10 =40)
Each question carries TEN marks. 8.		(4 x 10 =40)
Each question carries TEN marks. 8. 9.		(4 x 10 =40)
Each question carries TEN marks. 8. 9. 10.		(4 x 10 =40)
Each question carries TEN marks. 8. 9. 10. 11.		(4 x 10 =40)

Note : 1. For Section – A , Two questions from each Unit.

2. For Section – B , One question from each Unit, and Q-7 must be from Unit 2 to 5.

3. For Section – C , One question from each Unit, and Q-13 must be from Unit 2 to 5.

BCA/B.Sc Degree Examination, SEP – Scheme for Practical Examination

1.	Writing Two Programs	: 14 Marks (for each 7 marks)
2.	Execution of Two programs	: 16 Marks (for each 8 marks)
3.	Practical record	: 05 Marks
4.	Viva Voce	: 05 Marks
	Total	: 40 Marks